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Background. Familial Mediterranean Fever (FMF) is the most common autoinflammatory disease (AID) affecting mainly the ethnic
groups originating from Mediterranean basin. We aimed to identify the pathogenic SNPs in MEFV by computational analysis
software. Methods. We carried out in silico prediction of structural effect of each SNP using different bioinformatics tools to predict
substitution influence on protein structure and function. Result. 23 novel mutations out of 857 nsSNPs are found to have deleterious
effect on the MEFV structure and function. Conclusion. This is the first in silico analysis of MEFV gene to prioritize SNPs for further
genetic mapping studies. After using multiple bioinformatics tools to compare and rely on the results predicted, we found 23 novel
mutations that may cause FMF disease and it could be used as diagnostic markers for Mediterranean basin populations.

1. Introduction

Familial Mediterranean Fever is an autosomal recessive
inherited inflammatory disease [1-3] (however, it has been
observed that a substantial number of patients with clinical
FMF possess only one demonstrable MEFV mutation [4,
5]) that is principally seen in different countries [6-10].
However, patients from different ethnicities (such as Japan)
are being increasingly recognized [2, 11], and the carrier
frequency for MEFV genetic variants in the population in
the Mediterranean basin is about 8% [12]. Most cases of FMF
usually present with acute abdominal pain and fever [1, 3, 7],
both of which are also the main causes of referral in the
emergency department [13]. All these factors may help in
medical treatment. Colchicine is the first line therapy [14],
but in resistant cases (<10% of patients) [15], it affects the
responsiveness to Colchicine [16]; other anti-inflammatory
drugs can be used for extra anti-inflammatory effect [17].
If FMF is not treated, it may be an etiologic factor for
colonic LNH in children [18]. MEFV gene is localized on

16p13.3 of chromosome 16 at position 13.3 which consists of
10 exons with 21600 bp [3, 19]. The disease is characterized
by recurrent febrile episodes and inflammation in the form
of sterile polyserositis. Amyloid protein involved in inflam-
matory amyloidosis was named AA (amyloid-associated)
protein and its circulating precursor was named SAA (serum
amyloid-associated). Amyloidosis of the AA type is the most
severe complication of the disease. The gene responsible for
EME, MEFV, encodes a protein called pyrin or marenostrin
and is expressed mainly in neutrophils [3, 19].

The definition of the MEFV gene has permitted genetic
diagnosis of the disease. Nevertheless, as studies have
unwrapped molecular data, problems have arisen with the
clinical definitions of the disease [20]. FMF is caused by
mutations in the MEFV missense SNPs (we were focusing
on SNPs which are located in the coding region because it
is much important in disease causing potential, which are
responsible for amino acid residue substitutions resulting in
functional diversity of proteins in humans) [20] coding for
pyrin, which is a component of inflammasome functioning
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in inflammatory response and production of interleukin-18
(IL-1p3). Recent studies have shown that pyrin recognizes
bacterial modifications in Rho GTPases, which results in
inflammasome activation and increase in IL-1f3. Pyrin does
not directly recognize Rho modification but probably is
affected by Rho effector kinase, which is a downstream event
in the actin cytoskeleton pathway [19, 21, 22].

The aim of this study was to identify the pathogenic
SNPs in MEFV using in silico prediction software and to
determine the structure, function, and regulation of their
respective proteins. This is the first in silico analysis in MEFV
gene to prioritize SNPs for further genetic mapping studies.
The usage of in silico approach has strong impact on the
identification of candidate SNPs since they are easy and less
costly and can facilitate future genetic studies [23].

2. Method

2.1. Data Mining. The data on human MEFV gene was
collected from National Center for Biological Information
(NCBI) website [24]. The SNP information (protein accession
number and SNP ID) of the MEFV gene was retrieved from
the NCBI dbSNP (http://www.ncbi.nlm.nih.gov/snp/) and
the protein sequence was collected from Swiss Prot databases
(http://expasy.org/) [25].

2.2. SIFT. SIFT is a sequence homology-based tool [26] that
sorts intolerant from tolerant amino acid substitutions and
predicts whether an amino acid substitution in a protein will
have a phenotypic effect. It considers the position at which the
change occurred and the type of amino acid change. Given a
protein sequence, SIFT chooses related proteins and obtains
an alignment of these proteins with the query. Based on the
amino acids appearing at each position in the alignment, SIFT
calculates the probability that an amino acid at a position
is tolerated conditional on the most frequent amino acid
being tolerated. If this normalized value is less than a cutoff,
the substitution is predicted to be deleterious. SIFT scores
<0.05 are predicted by the algorithm to be intolerant or
deleterious amino acid substitutions, whereas scores >0.05
are considered tolerant. It is available at (http://sift.bii.a-
star.edu.sg/).

2.3. PolyPhen-2. It is a software tool [27] to predict possible
impact of an amino acid substitution on both structure
and function of a human protein by analysis of multiple
sequence alignment and protein 3D structure; in addition, it
calculates position-specific independent count scores (PSIC)
for each of the two variants and then calculates the PSIC
scores difference between the two variants. The higher a
PSIC score difference is, the higher the functional impact a
particular amino acid substitution is likely to have. Prediction
outcomes could be classified as probably damaging, possibly
damaging or benign according to the value of PSIC as it
ranges from (0_1); values closer to zero were considered
benign while values closer to 1 were considered probably
damaging and also it can be indicated by a vertical black
marker inside a color gradient bar, where green is benign and
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red is damaging. nsSNPs that is predicted to be intolerant by
SIFT has been submitted to PolyPhen as protein sequence
in FASTA format obtained from UniproktB/Expasy after
submitting the relevant ensemble protein (ESNP) there,
and then we entered position of mutation, native amino
acid, and the new substituent for both structural and func-
tional predictions. PolyPhen version 2.2.2 is available at
http://genetics.bwh.harvard.edu/pph2/index.shtml.

2.4. Provean. Provean is a software tool [28] which predicts
whether an amino acid substitution or indel has an impact
on the biological function of a protein. It is useful for
filtering sequence variants to identify nonsynonymous or
indel variants that are predicted to be functionally important.
It is available at (https://rostlab.org/services/snap2web/).

2.5. SNAP2. Functional effects of mutations are predicted
with SNAP2 [29]. SNAP2 is a trained classifier that is based on
a machine learning device called “neural network”. It distin-
guishes between effect and neutral variants/nonsynonymous
SNPs by taking a variety of sequence and variant features into
account. The most important input signal for the prediction
is the evolutionary information taken from an automati-
cally generated multiple sequence alignment. Also structural
features such as predicted secondary structure and solvent
accessibility are considered. If available also annotation (i.e.,
known functional residues, pattern, regions) of the sequence
or close homologs are pulled in. In a cross-validation over
100,000 experimentally annotated variants, SNAP2 reached
sustained two-state accuracy (effect/neutral) of 82% (at an
AUC of 0.9). In our hands this constitutes an important and
significant improvement over other methods. It is available at
(https://rostlab.org/services/snap2web/).

2.6. PHD-SNP. An online Support Vector Machine (SVM)
based classifier is optimized to predict if a given sin-
gle point protein mutation can be classified as disease
related or as a neutral polymorphism. It is available at
(http://snps.biofold.org/phd-snp/phd-snp.html).

2.7. SNP&Go. SNPs&GO is an algorithm developed in the
Laboratory of Biocomputing at the University of Bologna
directed by Prof. Rita Casadio. SNPs&GO is an accurate
method that, starting from a protein sequence, can predict
whether a variation is disease related or not by exploiting
the corresponding protein functional annotation. SNPs&GO
collects in unique framework information derived from
protein sequence, evolutionary information, and function
as encoded in the Gene Ontology terms and outperforms
other available predictive methods [30]. It is available at
(http://snps.biofold.org/snps-and-go/snps-and-go.html).

2.8. P-Mut. P-MuT, a web-based tool [31] for the annotation
of pathological variants on proteins, allows the fast and accu-
rate prediction (approximately 80% success rate in humans)
of the pathological character of single point amino acidic
mutations based on the use of neural networks. It is available
at (http://mmb.irbbarcelona.org/PMut).
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TABLE 1: Damaging or deleterious effect nsSNPs associated variations predicted by various softwares.
Amino Acid Change SIFT Polyphen PROVEAN SNAP2
prediction ~ Score Prediction score  Score  Prediction (cutoff=-2.5) prediction score

S749Y DAMAGING 0 PROBABLY DAMAGING 1.000 -3.116 Deleterious effect 64
F743S DAMAGING 0 PROBABLY DAMAGING 1000 -5.563 Deleterious effect 68
Y741C DAMAGING 0 PROBABLY DAMAGING 1.000 -6.035 Deleterious effect 77
F731v DAMAGING 0 PROBABLY DAMAGING 1.000  -5.159 Deleterious effect 81
1720T DAMAGING 0 PROBABLY DAMAGING 1.000 -3.639 Deleterious effect 58
L709R DAMAGING 0 PROBABLY DAMAGING 1000 -4.311 Deleterious effect 77
V691G DAMAGING 0 PROBABLY DAMAGING 1.000 -4.667 Deleterious effect 66
W689R DAMAGING 0 PROBABLY DAMAGING 1.000 -10.132 Deleterious effect 89
G668R DAMAGING 0 PROBABLY DAMAGING 1.000 -6.287 Deleterious effect 92
V659F DAMAGING 0 PROBABLY DAMAGING 1.000 -3.811 Deleterious effect 64
F636C DAMAGING 0 PROBABLY DAMAGING 1000 -6.49 Deleterious effect 79
R461W DAMAGING 0 PROBABLY DAMAGING 1.000 -5.456 Deleterious effect 68
H407Q DAMAGING 0 PROBABLY DAMAGING 1.000 -7.335 Deleterious effect 41
H407R DAMAGING 0 PROBABLY DAMAGING 1000 -7.332 Deleterious effect 51
H404R DAMAGING 0 PROBABLY DAMAGING 1000 -7.349 Deleterious effect 75
C398Y DAMAGING 0 PROBABLY DAMAGING 1.000 -10.314 Deleterious effect 51
C395Y DAMAGING 0 PROBABLY DAMAGING 1.000 -10.262 Deleterious effect 19
C395F DAMAGING 0 PROBABLY DAMAGING 1.000 -10.315 Deleterious effect 27
C395R DAMAGING 0 PROBABLY DAMAGING 1000 -11.074 Deleterious effect 27
H378Q DAMAGING 0 PROBABLY DAMAGING 1.000 -5.886 Deleterious effect 38
H378Y DAMAGING 0 PROBABLY DAMAGING 1.000 -4.884 Deleterious effect 45
C375R DAMAGING 0 PROBABLY DAMAGING 1.000 -8.429 Deleterious effect 66
L86P DAMAGING 0 PROBABLY DAMAGING 1.000 -4.1 Deleterious effect 19

2.9. I-Mutant 3.0. I-Mutant 3.0 is a neural network based
tool [32] for the routine analysis of protein stability and
alterations by taking into account the single-site mutations.
The FASTA sequence of protein retrieved from UniProt is
used as an input to predict the mutational effect on protein
stability. It is available at (http://gpcr2.biocomp.unibo.it/
cgi/predictors/I-Mutant3.0/I-Mutant3.0.cgi).

2.10. Modeling nsSNP Locations on Protein Structure. Project
hope is a new online web-server to search protein 3D
structures (if available) by collecting structural information
from a series of sources, including calculations on the 3D
coordinates of the protein, sequence annotations from the
UniProt database, and predictions by DAS services. Protein
sequences were submitted to project hope server in order
to analyze the structural and conformational variations that
have resulted from single amino acid substitution corre-
sponding to single nucleotide substitution. It is available at
(http://www.cmbi.ru.nl/hope).

2.11. GeneMANIA. We submitted genes and selected from a
list of data sets that they wish to query. GeneMANIA’ [33]
approach is to know protein function prediction integrating
multiple genomics and proteomics data sources to make
inferences about the function of unknown proteins. It is
available at (http://www.genemania.org/).

3. Results and Discussion

3.1 Result. See Tables 1-5 and Figure 1.

4. Discussion

23 novel mutations have been found (see Table 3) which
affected the stability and function of the MEFV gene using
bioinformatics tools. The methods used were based on
different aspects and parameters describing the pathogenicity
and provided clues on the molecular level about the effect of
mutations. It was not easy to predict the pathogenic effect of
SNPs using single method. Therefore, multiple methods were
used to compare and rely on the results predicted. In this
study we used different in silico prediction algorithms: SIFT,
PolyPhen-2, Provean, SNAP2, SNP&GO, PHD-SNP, P-MuT,
and I-Mutant 3.0 (see Figure 1).

This study identified the total number of nsSNP in Homo
sapiens located in coding region of MEFV gene, which were
investigated in dbSNP/NCBI Database [24]. Out of 2369,
there are 856 nsSNPs (missense mutations) submitted to
SIFT server, PolyPhen-2 server, Provean sever, and SNAP2,
respectively, and 392 SNPs were predicted to be deleterious
in SIFT server. In PolyPhen-2 server, the result showed that
453 were found to be damaging (147 possibly damaging and
306 probably damaging showing deleterious). In Provean
server our result showed that 244 SNPs were predicted to be
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TaBLE 2: Disease effect nsSNPs associated variations predicted by various softwares.

Amino Acid Change SNP&GO PHD-SNP P-Mut
Prediction RI Probability Prediction RI Score Score Prediction

S749Y Disease 1 0.573 Disease 3 0.649 0.67 (85%) Disease
F743S Disease 2 0.617 Disease 4 0.696 0.82 (90%) Disease
Y741C Disease 6 0.797 Disease 7 0.869 0.61 (83%) Disease
F731V Disease 6 0.79 Disease 8 0.899 0.93 (94%) Disease
1720T Disease 6 0.811 Disease 5 0.769 0.81 (89%) Disease
L709R Disease 3 0.672 Disease 4 0.695 0.66 (85%) Disease
V691G Disease 1 0.55 Disease 3 0.675 0.92 (93%) Disease
W689R Disease 7 0.841 Disease 8 0.924 0.93 (94%) Disease
G668R Disease 6 0.778 Disease 7 0.84 0.93 (94%) Disease
V659F Disease 6 0.805 Disease 7 0.84 0.82 (90%) Disease
F636C Disease 6 0.809 Disease 7 0.86 0.60 (82%) Disease
R461W Disease 3 0.644 Disease 1 0.572 0.63 (84%) Disease
H407Q Disease 6 0.788 Disease 4 0.705 0.79 (89%) Disease
H407R Disease 5 0.769 Disease 3 0.673 0.86 (91%) Disease
H404R Disease 5 0.744 Disease 5 0.734 0.80 (89%) Disease
C398Y Disease 7 0.864 Disease 8 0.912 0.86 (91%) Disease
C395Y Disease 7 0.864 Disease 8 0.912 0.91 (93%) Disease
C395F Disease 7 0.859 Disease 8 0.914 0.92 (94%) Disease
C395R Disease 7 0.842 Disease 8 0.892 0.92 (94%) Disease
H378Q Disease 4 0.714 Disease 4 0.698 0.88 (92%) Disease
H378Y Disease 5 0.732 Disease 5 0.728 0.80 (89%) Disease
C375R Disease 6 0.784 Disease 6 0.822 0.92 (94%) Disease
L86P Disease 5 0.729 Disease 6 0.801 0.51 (79%) Disease

TABLE 3: Stability analysis predicted by I-Mutant version 3.0 (also show the 23 novel mutations).

Amino Acid Change SVM2 Prediction Effect RI DDG Value Prediction
S749Y Decrease 0 -0.2
F743S Decrease 6 -1.16
Y741C Decrease 8 -2.5
F731V Decrease 6 -1.52
1720T Decrease 4 -0.92
L709R Decrease 3 -0.56
V691G Decrease 7 -1.25
W689R Decrease 7 -0.73
G668R Decrease 4 -0.37
V659F Decrease 2 -0.19
F636C Decrease 8 -1.28
R461W Increase 1 -0.01
H407Q Decrease 8 -1.48
H407R Decrease 5 -1.1
H404R Decrease 1 -0.06
C398Y Decrease 2 -0.09
C395Y Increase 4 0.26
C395F Increase 1 0.04
C395R Increase 4 0.13
H378Q Decrease 4 -0.68
H378Y Decrease 3 -0.26
C375R Increase 2 -0.01
L86P Decrease 2 -0.56
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TABLE 4: The MEFV gene functions and its appearance in network and genome.

Function

FDR Genes in network Genes in genome

nucleotide-binding domain, leucine rich repeat containing receptor signaling pathway

regulation of interleukin-1 beta production
interleukin-1 beta production

regulation of interleukin-1 production

interleukin-1 production

intracellular receptor signaling pathway

positive regulation of cysteine-type endopeptidase activity
positive regulation of endopeptidase activity

positive regulation of peptidase activity

inflammatory response

regulation of chemokine production

chemokine production

regulation of cysteine-type endopeptidase activity
tumor necrosis factor production

regulation of tumor necrosis factor production

tumor necrosis factor superfamily cytokine production
regulation of I-kappaB kinase/NF-kappaB signaling
I-kappaB kinase/NF-kappaB signaling

positive regulation of cytokine production

positive regulation of cysteine-type endopeptidase activity involved in apoptotic process 0.099763

positive regulation of interleukin-1 beta secretion
defense response to Gram-negative bacterium

cysteine-type endopeptidase activator activity involved in apoptotic process

regulation of endopeptidase activity
glycosaminoglycan binding

regulation of extrinsic apoptotic signaling pathway
regulation of peptidase activity

positive regulation of interleukin-1 secretion
regulation of interleukin-1 beta secretion

1.42E-07 [§ 47
0.000129 4 26
0.000129 4 30
0.000129 4 30
0.000196 4 35
0.000201 6 207
0.010438 4 101
0.010663 4 105
0.011 4 109
0.018246 5 283
0.018246 3 39
0.022338 3 44
0.033238 4 160
0.033238 3 54
0.033238 3 54
0.0407 3 59
0.046902 4 185
0.057722 4 198
0.065004 4 207
3 93
0.099763 2 15
0.099763 2 16
0.099763 2 17
0.099763 4 251
0.099763 3 88
0.099763 3 92
0.099763 4 258
0.099763 2 16
0.099763 2 17

*FDR: false discovery rate is greater than or equal to the probability that this is a false positive.

deleterious. While in SNAP2 server the result showed that
566 SNPs were predicted to have effect. The differences in
prediction capabilities refer to the fact that every prediction
algorithm uses different sets of sequences and alignments.
In Table 2 we submitted four positive results from SIFT,
PolyPhen-2, Provean, and SNAP2 (see Table 1) to observe
the disease causing one by SNP&GO, PHD-SNP, and P-Mut
servers.

In SNP&GO, PHD-SNP and P-Mut softwares were used
to predict the association of SNPs with disease. According to
SNP&GO, PHD-SNP and P-Mut (70, 91 and 58 SNPs respec-
tively) were found to be disease-related SNPs. We selected
the triple disease-related SNPs only in 3 softwares for further
analysis by I-Mutant 3.0, Table 3. I-Mutant result revealed
that the protein stability decreased which destabilizes the
amino acid interaction (S749Y, F743S, Y741C, F731V, 1720T,
L709R, V691G, W689R, G668R, V659E, F636C, H407Q,
H407R, H404R, C398Y, H378Q, H378Y, and L86P). C375R,
C395F, C395R, C395Y, and R461W were found to increase the
protein stability (see Table 3).

BioEdit software was used to align 10 amino acid
sequences of MEFV demonstrating that the residues pre-
dicted to be mutated in our band (indicated by red arrow)
are evolutionarily conserved across species (see Figure 2).
While Project HOPE software was used to submit the 23 most
deleterious and damaging nsSNPs (see Figures 3-25), L86P:
Proline (the mutant residue) is smaller than Leucine (the
wild-type residue); this might lead to loss of interactions. The
wild-type and mutant amino acids differ in size. The mutation
is located within a domain, annotated in UniProt as Pyrin.
The mutation introduces an amino acid with different prop-
erties, which can disturb this domain and abolish its function.
The wild-type residue is located in a region annotated in
UniProt to form an «-helix. Proline disrupts an «-helix when
not located at one of the first 3 positions of that helix. In case
of the mutation at hand, the helix will be disturbed and this
can have severe effects on the structure of the protein.

GeneMANIA revealed that MEFV has many vital
functions: chemokine production, inflammatory response,
interleukin-1 beta production, interleukin-1 production,
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TaBLE 5: The gene coexpression, shared domain, and interaction with MEFV gene network.
Genel Gene 2 Weight Network group
PF4 CEBPB 0.01083 Co-expression
NLRP14 MEFV 0.014663 Co-expression
EPX PADI4 0.01094 Co-expression
CASP1 PYCARD 0.012291 Co-expression
TINAGL1 MEFV 0.021529 Co-expression
ZNF747 MEFV 0.032075 Co-expression
ZNF747 TINAGL1 0.01915 Co-expression
EPX MEFV 0.019982 Co-expression
EPX ZNF747 0.01848 Co-expression
MRPL44 MEFV 0.02576 Co-expression
RPL27A MEFV 0.023047 Co-expression
TCTN2 MEFV 0.02049 Co-expression
TCTN2 ZNF747 0.021219 Co-expression
TCTN2 RPL27A 0.019574 Co-expression
ZNF528 RPL27A 0.021843 Co-expression
ZNF528 TCTN2 0.020287 Co-expression
PF4 TINAGL1 0.018596 Co-expression
PF4 EPX 0.016477 Co-expression
CASP1 PYCARD 0.005924 Co-expression
NLRP3 CEBPB 0.01342 Co-expression
CASP1 PYCARD 0.005896 Co-expression
AZU1 MEFV 0.01109 Co-expression
MAPILC3C NLRP14 0.011062 Co-expression
PADI4 MEFV 0.003094 Co-expression
AzZU1 MEFV 0.003152 Co-expression
AZU1 PADI4 0.004853 Co-expression
ZNF747 MEFV 0.004908 Co-expression
PADI4 MEFV 0.023362 Co-expression
AZU1 MEFV 0.012616 Co-expression
AZU1 PADI4 0.014322 Co-expression
NLRP14 MEFV 0.01623 Co-expression
EPX PADI4 0.01024 Co-expression
EPX AZU1 0.007038 Co-expression
ZNF528 MEFV 0.039375 Co-expression
PF4 MEFV 0.017902 Co-expression
PF4 AZU1 0.012247 Co-expression
PF4 EPX 0.007715 Co-expression
TINAGL1 MEFV 0.027084 Co-expression
MRPL44 MEFV 0.011927 Co-expression
TCTN2 MEFV 0.014192 Co-expression
TCTN2 TINAGL1 0.014867 Co-expression
TCTN2 ZNF747 0.010889 Co-expression
TCTN2 MAPILC3C 0.006994 Co-expression
TCTN2 MRPL44 0.010528 Co-expression
ZNF528 TCTN2 0.012167 Co-expression
RPL27A MEFV 0.016846 Co-expression
TCTN2 RPL27A 0.018021 Co-expression
CASP1 PSTPIP1 0.009518 Co-expression
EPX AZU1 0.01909 Co-localization
PADI4 MEFV 0.012301 Co-localization
PADI4 PSTPIP1 0.008748 Co-localization
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TaBLE 5: Continued.

Genel Gene 2 Weight Network group
AZU1 MEFV 0.011852 Co-localization
AZU1 PSTPIP1 0.008052 Co-localization
AZU1 PADI4 0.006025 Co-localization
EPX MEFV 0.011933 Co-localization
EPX PSTPIP1 0.008374 Co-localization
EPX PADI4 0.006323 Co-localization
EPX AZU1L 0.006061 Co-localization
FBXO9 MEFV 0.022287 Co-localization
FBXO9 PADI4 0.009957 Co-localization
FBXO9 AZU1 0.009656 Co-localization
FBXO9 EPX 0.009948 Co-localization
PF4 MEFV 0.012063 Co-localization
PF4 PSTPIP1 0.007583 Co-localization
PF4 PADI4 0.005603 Co-localization
PF4 AZU1 0.005356 Co-localization
PF4 EPX 0.005651 Co-localization
PF4 FBXO9 0.009449 Co-localization
CEBPB MEFV 0.159581 Pathway
RELA MEFV 0.078321 Pathway
PSTPIP1 MEFV 0.953023 Pathway
PYCARD MEFV 0.037199 Pathway
CASP1 PYCARD 0.037199 Pathway
CASP1 MEFV 0.469715 Physical Interactions
NLRP3 PYCARD 0.570819 Physical Interactions
PYCARD MEFV 0.03673 Physical Interactions
PYCARD PSTPIP1 0.028273 Physical Interactions
CASP1 PYCARD 0.017772 Physical Interactions
CASP1 CEBPB 0.010941 Physical Interactions
RELA CEBPB 0.00247 Physical Interactions
COG5 MEFV 0.211887 Physical Interactions
NLRP3 MEFV 0.111467 Physical Interactions
MAPILC3C MEFV 0.104412 Physical Interactions
PYCARD MEFV 0.292858 Physical Interactions
NLRP3 PYCARD 0.189095 Physical Interactions
PSTPIP1 MEFV 0.260595 Physical Interactions
PYCARD MEFV 0.204673 Physical Interactions
CASP1 PYCARD 0.042335 Physical Interactions
RELA CEBPB 0.007591 Physical Interactions
COG5 MEFV 0.387501 Physical Interactions
NLRP3 PYCARD 0.304828 Physical Interactions
NLRP3 PYCARD 1 Predicted
PYCARD MEFV 0.455503 Predicted
CASP1 PYCARD 0.043769 Predicted
RELA CEBPB 0.024601 Predicted
NLRP3 PYCARD 0.25852 Predicted
CASP1 CEBPB 0.445416 Predicted
CASP1 CEBPB 0.707107 Predicted
PYCARD MEFV 0.00952 Shared protein domains
CASP1 PYCARD 0.013543 Shared protein domains

NLRP3 MEFV 0.009339 Shared protein domains
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TaBLE 5: Continued.

Genel Gene 2 Weight Network group

NLRP3 PYCARD 0.018527 Shared protein domains
NLRP14 MEFV 0.009512 Shared protein domains
NLRP14 PYCARD 0.018871 Shared protein domains
NLRP14 NLRP3 0.036989 Shared protein domains
ZNF528 ZNF747 0.002699 Shared protein domains
PYCARD MEFV 0.011528 Shared protein domains
CASP1 PYCARD 0.031451 Shared protein domains
NLRP3 MEFV 0.009427 Shared protein domains
NLRP3 PYCARD 0.015448 Shared protein domains
NLRP14 MEFV 0.009815 Shared protein domains
NLRP14 PYCARD 0.016085 Shared protein domains
NLRP14 NLRP3 0.019774 Shared protein domains
ZNF528 ZNF747 0.002759 Shared protein domains

MEFVSNPsrsIDs
(NCBI) and protein
sequence (Swiss Prot)

-—

—

Validation

Functional Analysis ‘ Stability Analysis ’ Biophysical ’

SIFT,
PolyPhen
2,
Provean,
SNAP2,
SNP&GO,
PHD-
SNP, P-
MUT

I-Mutant 3.0.

Project HOPE

Most deleterious (damaging) nsSNPs: see table (3) ]

FIGURE 1: Diagrammatic representation of MEFV gene in silico work flow.

intracellular receptor signaling pathway, nucleotide-binding
domain, Leucine rich repeat containing receptor signaling
pathway, positive regulation of cysteine-type endopeptidase
activity, positive regulation of endopeptidase activity, positive
regulation of peptidase activity, regulation of chemokine

production, regulation of cysteine-type endopeptidase activ-
ity, regulation of endopeptidase activity, regulation of
interleukin-1 beta production, regulation of interleukin-
1 production, and regulation of peptidase activity. The
genes coexpressed with, sharing similar protein domain, or
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Human:
Mouse:
Rat:

Dog:
R.Monkey:
R.Gibbon:
W.Gorilla:
Bovine:
Cat:
G.Panda:

OH
H,N

o

Z
Z,
e Y

b
OM
)

FIGURE 6: (H378Q): change in the amino acid Histidine (green box)
into Glutamine (red box) at position 378.

(indicated by red arrow) are evolutionarily conserved across species. O HoN

SH NH
FIGURE 2: Alignments of 10 amino acid sequences of MEFV OH
. . . ) H,N
demonstrating that the residues predicted to be mutated in our band OH
Sequences Alignment was done by BioEdit (v7.2.5). O

FIGURE 7: (C395R): change in the amino acid Cysteine (green box)
into Arginine (red box) at position 395.

FIGURE 3: (L86P): change in the amino acid Leucine (green box) into
Proline (red box) at position 86.

FIGURE 8: (C395F): change in the amino acid Cysteine (green box)
into Phenylalanine (red box) at position 395.

H,N NH

SH OH
SH

H, N OH

OH OH

0 H,N
o]

@)
o
z.
Z:
s}
o5
Z
sl
@)
T

FIGURE 4: (C375R): change in the amino acid Cysteine (green box)
into Arginine (red box) at position 375. FIGURE 9: (C395Y): change in the amino acid Cysteine (green box)
into Tyrosine (red box) at position 395.

N NH, H
L 0
NH
SH
OH OH OH
H,N H,N HZN/<( H,N H
0 0 0

(€]

FIGURE 5: (H378Y): change in the amino acid Histidine (green box) FIGURE 10: (C398Y): change in the amino acid Cysteine (green box)
into Tyrosine (red box) at position 378. into Tyrosine (red box) at position 398.
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FIGURE 11: (H404R): change in the amino acid Histidine (green box)

AN
L
H,N "

O

HZN\(NH

NH

H,N
0

into Arginine (red box) at position 404.

FIGURE 12: (H407R): change in the amino acid Histidine (green box)

H,N

OW\
>
2
e E

H,N
0

into Arginine (red box) at position 407.

FIGURE 13: (H407Q): change in the amino acid Histidine (green box)

N
AN
LY
NH
OH
H,N
O

NH,
0
OH
H,N
0

into Glutamine (red box) at position 407.

FIGURE 14: (R461W): change in the amino acid Arginine (green box)

HZN\/K\IH

H

OH
H,N

O

~NH
OH
H,N
O

into Tryptophan (red box) at position 461.

FIGURE 15: (F636C): change in the amino acid Phenylalanine (green

SH

OH

O

H,N

box) into Cysteine (red box) at position 636.
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H,N

OH

SH

OH

FIGURE 16: (V659F): change in the amino acid Valine (green box)

into Phenylalanine (red box) at position 636.

H,N

OH
(€]

1, N NH
NH
OH
H,N
o}

FIGURE 17: (G668R): change in the amino acid Glycine (green box)

into Arginine (red box) at position 668.

H,N

~ NH
OH

(@)

HZN\(]\IH
NH

OH
H,N

O

FIGURE 18: (W689R): change in the amino acid Tryptophan (green

box) into Arginine (red box) at position 689.

OH

(€]

OH
Y

(€]

FIGURE 19: (V691G): change in the amino acid Valine (green box)

into Glycine (red box) at position 691.

H,N

(@)

H,N_NH
NH
OH
H,N
o}

FIGURE 20: (L709R): change in the amino acid Leucine (green box)

into Arginine (red box) at position 709.
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OH

OH
OH H,N

(¢}

FIGURE 21: (I720T): change in the amino acid Isoleucine (green box)
into Threonine (red box) at position 720.

SH

OH OH

(¢} (@]

FIGURE 22: (F731V): change in the amino acid Phenylalanine (green
box) into Valine (red box) at position 731.

OH

SH

OH
OH H,N

0 (€]

H,N

FIGURE 23: (Y741C): change in the amino acid Tyrosine (green box)
into Cysteine (red box) at position 731.

SH
OH

OH

O 0

FIGURE 24: (F743S): change in the amino acid Phenylalanine (green
box) into Serine (red box) at position 743.

OH

OH

H,N OH
H,N
o 0

FIGURE 25: (S749Y): change in the amino acid Serine (green box)
into Tyrosine (red box) at position 749.

PF4

FBXO®

INF528
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1
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%
S
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Networks
Physical Interactions
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Predicted
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Pathway
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Shared protein domains

FIGURE 26: Interaction between MEFV and its related genes.

participated to achieve similar function were shown in (see
Figure 26) Tables 4 and 5.

In this study we also retrieved all these SNPs as untested
(V659F, L709R, F743S, S749Y). We found it to be all dam-
aging. Our study is the first in silico analysis of MEFV gene
which was based on functional analysis while all previous
studies [34, 35] were based on frequency. This study revealed
that 23 novel pathological mutations have a potential func-
tional impact and may thus be used as diagnostic markers for
Mediterranean basin populations.

5. Conclusion

In this work the influence of functional SNPs in the MEFV
gene was investigated through various computational meth-
ods, which determined that S749Y, F743S, Y741C, F731V,
1720T, L709R, V691G, W689R, G668R, V659 F636C,
R461W, H407Q,, H407R, H404R, C398Y, C395Y, C395E
C395R, H378Q, H378Y, C375R, and L86P are new SNPs
having a potential functional impact and can thus be used
as diagnostic markers. They constitute possible candidates
for further genetic epidemiological studies with a special
consideration of the large heterogeneity of MEFV SNPs
among the different populations.

Data Availability

The data which support our findings in this study are available
from the corresponding author upon reasonable request.
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